Avon Memorial Water Filtration Plant A Small System

Solution for Manganese Removal

Ryan J. Trahan, P.E. Associate Partner Amory Engineers, P.C. Duxbury, MA

John Tetreault Water Superintendent Town of Avon, MA

Presentation Outline

- Avon Background & Historic Water Quality
- Pilot Study

- WTP Design & Construction
- Results & Operational Procedures
- Conclusion

- Location
 - North of Brockton and East of Stoughton
- Distribution System
 - Population Served 4,400
 - Active Well Supplies 6 (All Groundwater)
 - Water Storage Facilities 2 (Total of 2.5 MG)
 - 43 Miles of Distribution Watermains
 - All well supplies in Taunton River Basin
 - Avg. Day Demand 0.43 MGD
 - Max Day Demand 0.61 MGD

• Distribution System (cont.)

- Well Supplies
 - Porter Well Oldest dug well in the United States
 - Well No. 1
 - Well No. 2 (Inactive)
 - Well No. 3 (Emergency)
 - Well No. 4
 - Trout Brook Wellfield
 - Wellfield No. 3
- All wells in Trout Brook Aquifer except Porter Well

- Historic Water Quality Trout Brook Aquifer
 - Groundwater is Corrosive pH of about 5.8
 - Excessive Manganese Levels 0.05 to 1.4 mg/L
 - Secondary Maximum Contaminant Level 0.05 mg/L
 - Iron Levels OK 0.01 to 0.07 mg/L
 - MTBE Levels ND to 29 µg/L
 - Secondary Maximum Contaminant Level 20 to 40 μg/L
 - The secondary MCL for MTBE is based on the Drinking Water Advisory set by EPA and is based on taste and odor considerations.

• Historic Water Quality – Trout Brook Aquifer (cont.)

- Poorest Water Quality Well 1
 - Mn Levels 0.21 to 0.81 mg/L
 - pH 5.9
 - MTBE Levels ND 29 μg/L
 - Adjacent to gasoline contamination in Brockton
- Decision to Proceed with Pilot Testing
 - Loss of public confidence in drinking water
 - Reduction of frequent flushing
 - Appropriation of funds in 2006

Conducted in Spring/Summer 2006

Four treatment processes selected for Mn removal

- Membrane Filtration
 - Koch Membrane Systems
 - Zenon Environmental (now GE)
- Pressure Filtration
 - Hungerford & Terry
 - Layne Christensen

- MTBE removal piloted concurrently
 - Selected process GAC
 - GAC filter furnished by Norit Americas
 - Hungerford & Terry ran the process concurrent with their pilot

- Well No. 1 raw water utilized for all piloted processes
 - Raw water quality throughout testing
 - Mn Concentrations 0.3 mg/L
 - MTBE Concentrations 7 μg/L

- Goals
 - Reduce Mn concentration to ≤0.03 mg/L

- Reduce MTBE concentration to non-detect
- Optimize production and chemical dosage
- Minimize capital cost of full-scale treatment

- Koch Membrane Systems
 - Ultrafiltration hollow-fiber membranes
 - Raw water pH raised to 7.7
 - Potassium Permanganate utilized as oxidant
 - Dosage rate about 0.96 mg/L
 - "Inside-out" Clean water forced across membranes to outside under slight positive pressure to inside of fibers
 - Oxidized manganese discharged to waste

- Zenon Environmental
 - Ultrafiltration hollowfiber membranes
 - Raw water pH raised to 7.7
 - Potassium Permanganate utilized as oxidant
 - Dosage rate about 0.96 mg/L
 - "Outside-In" Clean water forced across membranes to inside under slight negative pressure on fibers
 - Oxidized manganese discharged to waste

- Hungerford & Terry
 - Pressure filtration
 - Raw water pH raised to 7.2
 - Sodium hypochlorite utilized as oxidant
 - Dosage rate about 1.5 mg/L
 - Media 18" GreensandPlus 18" Anthracite
 - Backwash interval 5 days

- Layne Christensen
 - Pressure filtration
 - Raw water pH raised to 7.2
 - Sodium hypochlorite utilized as oxidant
 - Dosage rate about 1.0 mg/L
 - Media 48" of LayneOx
 - Backwash interval 5 days

Waterworks • Water Resources • Civil Works

Pilot Study - Results

- Water Quality
 - Results consistent for each process
 - Raw water Mn concentrations 0.25 mg/L to 0.40 mg/L
 - Finished water Mn concentrations 0.06 mg/L to non-detect
 - MTBE concentrations reduced from 5 to 7 $\mu g/L$ in raw water to non-detect in finished water
- Process Efficiency Goal 95%
 - Membrane Process Koch, 95%; Zenon, 97%
 - Pressure Filtration H&T, 98%; Layne, 99%
- Process Equipment Cost
 - Membranes significantly more expensive

- Selection of Treatment Processes
 - Pressure filtration for Mn removal
 - GAC for MTBE removal
- Procurement of Process Equipment
 - Equipment footprints vary by manufacturer
 - Building design and process piping dependent on selected manufacturer
- Selection of Manufacturer
 - H&T selected for Mn removal
 - Calgon Carbon for MTBE removal

- H&T System
 - Two 9-ft. diameter pressure filters
 - 4-ft. of filter media
 - 1-ft. gravel support bed
 - 1.5-ft. anthracite
 - 1.5-ft. GreensandPlus
 - GreensandPlus
 - Higher differential pressure
 - Longer run times
 - Reduced backwash frequency

- Site Selection
 - Two Town-owned parcels in proximity to Trout Brook aquifer
- Argyle Avenue
 - Located adjacent to Operations Center
 - Close to 3 out of 5 wells
 - Unfavorable soils, challenging site design
- Memorial Avenue Selected Site
 - Located adjacent to Well No. 1
 - Favorable soils, ground grades

- Transmission Main
 - Conveys water from Wells 3 & 4 and Trout Brook and Well 3 wellfields
 - Partially directionally drilled through wetlands
- Corrosion Control Facilities
 - Utilized existing facilities to continue to raise pH and add sodium hypochlorite as an oxidant

- Building
 - 52-ft. x 70-ft. pre-engineered metal building
- Office/Control Room
- Chemical Feed System
 - Sodium hypochlorite fed in plant discharge
- Clearwell
 - 13,000 gallon capacity
 - 2 High-lift pumps

- Calgon Carbon MTBE removal
 System can be bypassed
- Two-Tiered Lagoon System
- Standby Power Natural Gas Generator
- Instrumentation System
- Security System

WTP Process Flow Diagram

Results & Operational Procedures

- WTP Online October 30, 2009
- Instrumentation/Security System
- Water Quality Testing
 - Reduction of distribution system entry points
- Blending of Water
 - Reduction of influent Mn concentrations
 - Prolonged backwash cycles

Results & Operational Procedures

- Backwash Frequency
 - Default setting differential pressure of 10 psi
 - Town reset to 5 psi
 - Backwash once every 3 days
 - Backwash also initiated by runtime
 - Fully automated
- Calgon Carbon System
 - Manual backwash system
 - Backwash once per year

Results & Operational Procedures

- Monitoring
 - Influent and effluent Mn concentrations
 - Differential pressures for both H&T and Calgon systems
 - Raw and finished water pH
 - Raw and finished water chlorine concentration
 - Intermediate water chlorine concentration

Conclusions

- Manganese Concentrations
 - Goal ≤0.03 mg/L
 - Finished water often non-detect
- Plant Efficiency
 - Goal 95%
 - Currently 97.4%
- Total Cost: \$2.3 million
- Meeting water quality expectations!

Questions?

 <u>Contact Information</u> John Tetreault, Water Superintendent Town of Avon, MA P: 508-588-0414 Email: jtetreault@avonmass.org

Ryan Trahan, P.E., Associate Partner Amory Engineers, P.C. Duxbury, MA P: 781-934-0178 Email: rtrahan@amoryengineers.com www.amoryengineers.com

